Dank Schweizer Technologie: Computerchips können noch kleiner werden
Für die digitale Revolution ist die sogenannte Miniaturisierung von Computerchips ein wesentlicher Faktor, also die Verkleinerung von Bauteilen, die ihren vollen Funktionsumfang beibehalten. Rechner werden so immer kleiner und gleichzeitig leistungsfähiger – was Entwicklungen wie autonomes Fahren, künstliche Intelligenz und 5G-Standard für den Mobilfunk überhaupt erst ermöglicht.
Nun hat eine Arbeitsgruppe um Iason Giannopoulos, Yasin Ekinci und Dimitrios Kazazis am Labor für Röntgen-Nanowissenschaften und Technologien am Paul Scherrer Institut PSI in Würenlingen und Villigen eine neuartige Technik entwickelt, mit der sich noch dichtere Schaltkreismuster erstellen lassen. Das schreibt das PSI in einer Mitteilung.
Die derzeit modernsten Mikrochips haben Leiterbahnen, die nur zwölf Nanometer voneinander entfernt sind. Das heisst, sie sind etwa 6000-mal dünner als ein menschliches Haar. Die Forschenden erzeugten nun aber Leiterbahnen, die nur noch fünf Nanometer auseinander liegen. Damit lassen sich Schaltkreise weitaus kompakter anordnen als bislang. «Unsere Arbeit veranschaulicht das Potenzial von Licht, um Muster herzustellen. Das bedeutet einen wichtigen Schritt sowohl für die Industrie als auch für die Forschung», lässt sich Giannopoulos in der Mitteilung zitieren.
Chips entstehen wie früher das Bild im Kino
Noch im Jahr 1970 fanden auf einem Mikrochip nur etwa 1000 Transistoren Platz. Heute sind es etwa 60 Milliarden Bauelemente auf einer Fläche, die kaum grösser ist als eine Fingerkuppe. Die Produktion der Bauteile erfolgt mit einer Art der Belichtung, der sogenannten Fotolithografie: Auf einer dünnen Scheibe aus Silizium, dem Wafer, wird eine lichtempfindliche Schicht aufgetragen, der Fotolack oder englisch Photoresist.
Entscheidend für die Verkleinerung und immer kompaktere Chips ist das verwendete Licht. Physikalische Gesetze besagen, dass die abgebildeten Strukturen umso dichter gepackt werden können, je kleiner die Wellenlänge des verwendeten Lichts ist.
Seit dem Jahr 2019 nutzen die Hersteller zur Massenproduktion «extreme ultraviolet light» (EUV) mit einer um mehr als den Faktor zehn verkürzten Wellenlänge von 13,5 Nanometern. Dies erlaubt das Drucken noch feinerer Strukturen bis zehn Nanometern und darunter. Am PSI setzen die Forschenden für ihre Untersuchungen Strahlung aus der Synchrotron Lichtquelle Schweiz SLS ein, die auf den Industriestandard von 13,5 Nanometer abgestimmt ist.
Photonenbasierte Lithografie erlaubt höchste Auflösungen
Die PSI-Forschenden haben jedoch die konventionelle EUV-Lithografie erweitert, indem sie die Probe nicht direkt bestrahlten, sondern indirekt. Bei dieser sogenannten EUV-Spiegelinterferenzlithografie (MIL) werden zwei zueinander kohärente Strahlen von zwei identischen Spiegeln auf den Wafer reflektiert. Die Strahlen erzeugen daraufhin ein Interferenzmuster mit einem Muster, das sowohl von dem Winkel des einfallenden Lichts als auch dessen Wellenlänge abhängt.
Die Gruppe erreichte damit Auflösungen, also Abstände zwischen den Leiterbahnen, von fünf Nanometern – und zwar mit einer einzigen Belichtung. Die Leiterbahnen offenbarten im Elektronenmikroskop jeweils gute Kontraste mit scharfen Kanten. «Unsere Ergebnisse zeigen, dass die EUV-Photonenlithografie extrem hohe Auflösungen erzeugen kann, was darauf hindeutet, dass es noch keine grundlegenden Grenzen gibt», stellt Kazazis fest.
Das Team plant, seine Forschungen mit einem neuen EUV-Werkzeug an der SLS fortzusetzen, das für Ende 2025 erwartet wird. Das neue Gerät wird in Verbindung mit der SLS 2.0, die derzeit aufgerüstet wird, deutlich mehr Leistung und Möglichkeiten bieten.(az)